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Abstract—Nowadays, all major publishers of popular
media content mandate the usage of DRM copy pro-
tection for their published works. But as preventing
digital content from being copied is a difficult problem,
the current approaches for copy protection involve
locking down systems, criticized as endangering general
computation and user freedom.
This survey looks at the available hardware support
technologies for providing hardware trust anchors or
trusted execution environments, ranging from Secure
Boot and TPM to Intel SGX and TrustZone, and
evaluates their usage in the DRM architectures of
Android and the HTML5 EME browser stack. Showing
shortcomings in authenticity checking of components,
different levels of required lock-down, and output pro-
tection of all covered architectures, we find that the
usage of trusted execution environments reduces the
required system lock-down for DRM protection. But
many other negative effects of DRM can not be solved
with this approach.

Index Terms—Security, DRM, Trusted Execution
Environments, SGX, TrustZone, TPM, HTML5 EME

I. Introduction

Since early on in the so-called “information economy”,
publishers have tried to limit the distribution of their
digital goods to the buyers only. In his keynote “The
coming war on general computation” at the 28th Chaos
Communication Congress [1], Cory Doctorow outlines the
development of copy-protection mechanisms from first
including uncopiable bad sectors to the floppy disks on
which programs were distributed or tying the execution
to dongles and license keys, to encrypted music and video
files protected with dedicated Digital Rights Management
(DRM) schemes.
But these attempts were mostly based on obscuring the
protection mechanism used, thus being vulnerable to
circumvention through reverse-engineering, patching out
the protection mechanism or retaining the supposedly-
secret media decryption keys even after the usage license
expired. The renowned IT security columnist and expert
Bruce Schneier commented on these attempts: “Digital
files can not be made uncopyable, any more than water
can be made not wet.” [2] The underlying vulnerability
of all these copy protection schemes was that they were
attempting to “[…] figure out how to stop computers from
running certain programs and inspecting certain files and
processes.” [1] But as modern day computers are mostly

general computation machines, they are inherently based
on copying data and computing on them.

Doctorow warns that all countermeasures trying to
ensure copy protection of digital content are going to result
in creating “appliances”, which are still general purpose
computers, but locked down with “some combination of
rootkits, spyware, and code-signing to prevent the user
from knowing which processes are running, from installing
her own software, and from terminating processes that she
doesn’t want.” [1]
Additionally, international agreements based on the World
Intellectual Property Organization (WIPO) Copyright
Treaty [3], its most prominent implementation being the
US-American Digital Millenium Copyright Act (DMCA),
make the circumvention of “technical protection measures”
such as DRM illegal.

So right now we are in a situation, where all major
publishers of e.g. video1 and audio2 content, and video
games3 require the usage of DRM for protecting their
published works. Thus right now, all software using this
content has to be proprietary and whole platforms are
being locked down more and more. This development is
most apparent in non-PC platforms like mobile devices,
where unlocking the bootloader (if even possible) results
in deletion of DRM keys of the device. [5]

But in recent years modern CPU architectures have
introduced special hardware-backed Trusted Execution
Environments (TEEs) to provide a secured environment
for security-critical code to be executed in isolation from
the main untrusted operating system (OS). Can these
TEEss and other special hardware trust-anchors provide
the possibility to present DRM-secured content in an
otherwise open and open source system? Or does DRM
only work on completely locked-down systems?

In II we first give an overview of common technologies
used for providing trust anchors for running systems or iso-
lating software into a trusted environment. Afterwards, III
covers existing DRM architectures already utilizing TEEs.

1all Hollywood film publishers require adhering to certain protec-
tion standards like [4]

2although legal music file purchases are mostly DRM-free, the
consumption model of streaming has brought back DRM to platforms
like Spotify or Deezer

3Valve’s Steam platform integrates its own DRM into sold games;
other publishers and gaming consoles have their own DRM systems
as well
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Aiming for the usage on systems as open as possible, IV
looks at the security of the presented architectures on
such systems and at last takes a look at other problematic
effects of DRM usage.

II. Background: Trust Anchors and Trusted
Execution

This section first gives an overview about technologies
used for having a trust anchor in a running system.
Although these approaches are often used for locking down
whole systems, they may also provide the basis for building
more open systems by tying trust to hardware anchors
instead of a locked-down software stack.
Afterwards we cover the technologies dedicated to provid-
ing a TEE in modern processor architectures.

A. UEFI Secure Boot
Secure Boot is a functionality of the Unified Extensible

Firmware Interface (UEFI) boot firmware component [6]
to allow only the launch of authenticated boot images.
To achieve that, boot images can be signed with X.509
certificates. Only if the image verifies correctly against a
key stored in non-volatile firmware memory or against an
entry in an explicit allow list of signatures, it is launched
by the firmware. This first check on which bootloader
or OS image to launch can be the anchor of a trust
chain, if each consecutive execution step also checks the
authenticity of software to be launched. The allow and
deny lists can be updated from the running OS and
deploying own custom platform keys for verification can
be possible through setup-mode of UEFI.

Firmwares adhering to the UEFI standard are the dom-
inant system software for the PC platform (including x86
devices like servers, laptops and mobile devices, but also
more and more devices with ARM chipsets).

B. TPM
Trusted Platform Modules (TPMs) are dedicated hard-

ware components offering a variety of security services to
a system [7]:
TPMs provide secure storage inside the module to store
sensitive data like cryptographic keys in such a way that
it can not be leaked to or stolen from processes running
on the main CPU.
These stored keys can be used to execute cryptographic
operations on behalf of the system, without the keys
getting transferred to the outside of the module.
The attestation functionality can attest the identity of
software by calculating a hash sum of the supplied binary,
signing it with its internal key to prove a certain system
configuration or software version to third parties having
a corresponding verification key. When pre-deployed with
a unique key, all previously mentioned functionality can
be combined to provide a unique machine identity and
form a hardware trust anchor for running systems.
A continuous trust chain can be built from the boot-up

on if all software components, starting from the firmware
on, let the TPM attest the processes to be launched.
Based on reference signatures stored in the module’s se-
cure storage, each component can then decide to allow or
refuse the next software to launch. A similar boot policy
this attestation-checking during boot is authenticated
booting. Again the TPM calculates the checksum of each
boot stage but does not enforce any signature checks and
only stores the results inside its secure internal registers,
from where the system status can be queried later.[8] In
contrast to UEFI Secure Boot (II-A), it is also possible
to securely attest and launch code using special late-
launch CPU instructions introduced into AMD and Intel
chipsets without providing a continuous trust chain from
the firmware on [8].
Additionally, TPMs provide important support function-
ality for cryptographic algorithms like secure counters,
a secure clock for peripherals and a secure source of
entropy. [7]

C. Trusted Execution Environments
To allow separating the execution of security critical

code from the large untrusted codebase of the rest of
the system, all major processor vendors have introduced
so called TEEs. These are separated co-processors, either
dedicated or virtualised, providing a computing environ-
ment with at least its own computing resources, registers
and memory (areas) isolated from the untrusted parts of
the running system.

This section is mostly not based on the vendor’s refrence
manuals but on other papers reviewing the applicability of
such environments. [8], [7], [9]

1) ARM TrustZone: ARM trust zone [10] is a set of se-
curity extensions for processors, currently available for the
ARMv8 architecture. Additionally, the processor vendor
AMD has announced to include TrustZone co-processors
into some of their x86 processors. It divides the physical
processing environment into two separate worlds that can
be switched. The secure world, being the initial processor
state after reset, and the normal world, where all legacy
and non-critical code is run. Each world provides its own
runtime environment with (virtually) dedicated registers,
memory, processor, caches and interrupts. Additionally,
each world runs its own operating system, with general
purpose OSs running in the normal world, while the secure
world tends to use special purpose OSs like the Trusty OS
[11] used by the Android Open Source Project.

How these dedicated virtual resources are actually
backed by physical ones depends on the implementation
of the system on a chip (SoC). Resources can either
be strongly partitioned (e. g. memory), shared between
worlds (often the case for caches, processor) or assigned
exclusively to one of the worlds (most I/O devices, sepa-
rate register banks).
The memory is strongly partitioned on boot-up, render-
ing the worlds inaccessible to each other. This memory
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isolation is supported by marking the secure world with
an additional bit at the hardware level.
Communication between the worlds is made possible by
the secure monitor processor mode, controlled by a dedi-
cated register. This monitor mode can implement context
switches between the worlds as it can access copies of
non-secure registers from the secure context. ARM CPUs
always boot first into the secure world and hand over
control to the non-secure world after initialization. Later
on, the normal world can use a special secure monitor call
instruction to give control to the secure monitor mode,
performing a context switch. Interrupts can directly map
into the secure monitor mode.

With the memory only being separated but not en-
crypted, TrustZone’s security relies on having a connection
to its memory which can not be eavesdropped upon.

2) Apple SecureEnclave Processor: Although Apple’s
own SoCs use the ARM architecture, the company has
decided to use their own secure co-processor solution
instead of TrustZone (II-C1). Their Secure Enclave Proces-
sor is a dedicated processor, running an L4 microkernel,
communicating with the main CPU over a bus system and
accessing the system’s memory using inline-encryption. [8]

3) Intel SGX: Intel’s Software Guard Extensions (SGX)
are a method to launch multiple trusted components into
their own fully isolated enclaves and thus, according to [8],
can be seen as a more advanced version of the late-launch
approach (II-B). Enclaves can be scheduled by the OS like
normal processes, but code and memory of enclaves are
only visible from the inside. Enclave memory resides in the
common system’s DRAM but is transparently encrypted.
Additionally, SGX includes attestation of code running
within an enclave similar to TPM, but does not provide
other TPM features like secure non-volatile storage.
As only userland code running in ring 3 can be run inside
enclaves, relying on the OS for scheduling and resource
management, SGX is vulnerable to side-channel attacks
[12].

III. Hardware Support for DRM systems

So how can these hardware security mechanisms be used
to support DRM mechanisms and make them run securely
within a still open platform?

A. Android DRM architecture
The Android platform provides its own DRM frame-

work[13], providing an API for applications to commu-
nicate with a DRM manager over inter-process commu-
nication (IPC). This DRM manager then runs plug-ins
managing the actual DRM schemes as separate processes
for isolation purposes.
The level of protection provided by the DRM plug-in varies
depending on the plug-in itself and on the capabilities of
the hardware platform. Plug-ins may rely on secure boot
for a verified chain of trust from the firmware level on, use

protected output mechanisms provided by the hardware
platform and even run the programs inside a TEE.

Plug-ins are automatically loaded when they are placed
into the /system/lib/drm/plug-ins/native/ directory.
One issue we see here is that there is no mention of
authenticity checking of plug-ins in the documentation.
[13] This can enable DRM plug-ins to claim to be able
to decrypt a certain stream and thus at least result in
the user not being able to decrypt their media with the
proper add-on. Additionally it might also open up attack
vectors for the communication with a license server, as
shown later.

One cross-platform DRM plugin solution is WiDevine
[14], currently owned by Google. It provides native solu-
tions for the Android, iOS and HTML5 platform. Thus
the DRM decryption process is very similar to the one
specified in HTML5 EME and will be covered in section
III-B in more detail.
The reason we look at the example of the WiDevine
Android plugin is that it supports different security levels,
depending on the use of hardware security mechanisms
[14]: For security level 1, “[a]ll content processing, cryp-
tography, and control is performed within the Trusted
Execution Environment (TEE).” This includes that even
the decrypted video frames are to be passed to the graphics
hardware using a secured mechanism.
This is not the case for security level 2: There only the
cryptographic operations are done within a TEE, but the
decrypted video content is passed to processes running
outside of a secure environment for further decoding,
demuxing and post processing. But still all cryptographic
keys remain secured within the TEE.
And security level 3 is provided on devices without a TEE
at all, where “[a]ppropriate measures may be taken to pro-
tect the cryptographic information and decrypted content
on host operating system”, which can be considered as a
system-level lock down.

The architecture overview does not mention how to
persistently store the acquired decryption keys. At the
same time we know that apps4 are offering functionality
like an offline mode, requiring persistent storage of keys.

B. HTML5 EME
To be able to provide DRM support for media content

in the web, the Encrypted Media Extensions (EME) have
been standardized by the World Wide Web Consortium
(W3C) [15]. EME are not a DRM system themselves,
but provide a standardized JavaScript API for mediation
between HTML5 media elements and so-called Content
Decryption Modules (CDMs). These CDMs are not stan-
dardized in EME but are proprietary modules managing
the actual DRM scheme including license management,
key retrieval, decryption and (optionally) decoding.

4example: Netflix for Android https://help.netflix.com/en/node/
54816
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Fig. 1. Sequence of information exchange between EME compo-
nents, source [9]

In [9] Livshits et al. analyse current web browsers
and their EME implementations for potential vulnera-
bilities and propose an architecture to back CDMs with
TEE-usage – not only for higher security but also to fulfil
the requirements of media publishers of having hardware-
backed copy protection.

EME flow: For the playback of DRM protected media,
information has to be exchanged between the web applica-
tion and its media file, the CDM and license/ key servers.

First the browser’s media stack parses the embedded
media file and discovers the key id embedded into the
media file’s metadata. This fires a needkeys event including
some initialization data to the web application which
then creates the mediaKeys and mediaKeySession for a
specific key system. After the initialization data is pushed
to a CDM implementing the key system, it generates a
keymessage for a license server. The message is then sent
to the license server by the browser, passing the response
back to the CDM as well which decrypts the received
license and updates the mediaKeySession.
After a keyadded/keyerror event fired back to the web
application, indicating the success status of the license
retrieval, it can finally initiate the playback of the media
file, causing the CDM to decrypt it using the received
license key.

Hereby all javascript events fired from the CDM to the
web application contain byte buffers, which the web appli-
cation running in browser context passes around and sends
them to the respective servers. But these byte buffers are
usually encrypted by the CDM and thus incomprehensible
to the browser handling them. [16]

One interesting side-note is that due to the usage of
the ISO Common Encryption standard for encryption
of the media files, the same file can be decrypted by
different CDMs implementing different DRM schemes. As
the license format and content of the encrypted byte
buffers are proprietary, differing between various DRM
schemes, this requires the content provider to operate
the respective license servers for each scheme. But having
acquired a license, each CDM can then decrypt the media
file accordingly.

Integration with a TEE: The EME standard only
mandates the content decryption to take place in the

CDM, so the media file might as well be passed back
to the browser’s media stack for decoding and rendering.
Livshits et al. identified this as potential vulnerabilities
of a DRM scheme, as the decrypted media data might
be easily grabbed from the browser context by abusing
security vulnerabilities, adding add-ons (browser exten-
sions) to the running browser or grabbing the content
from pipes between the media stack’s components. [9] As
we are looking at the usage of DRM in an as-open-as-
possible system, we would like to add the possibility of
just changing the source code of an available open source
browser5 to additionally capture all media data passed
back to it for decryption.
As a countermeasure, they propose to move both the CDM
as well as the whole media decoding and rendering stack
to a TEE, making the browser player part of the trusted
computing base (TCB). For that purpose they extend the
EME architecture by adding a CDM proxy component
running in browser context, which has to forward EME
calls to the real CDM running within the TEE. They
specify how to run the CDM using Intel SGX (see II-C3
or using ARM TrustZone (see II-C1).
On systems with SGX, the CDM is launched inside a
secure enclave created by the browser. When utilizing
TrustZone, inside the normal world the browser notifies its
OS that the license- or metadata needs to be exchanged to
the secure world. Initiating a secure monitor call, the data
is transferred to the secure world where the CDM can now
create a license request or can decrypt the media content.
To prevent the leakage of the decrypted media during
rendering and display, the media pipeline has to be secured
as well. In [9] this is done for the graphics pipeline by
utilizing measures available on the respective hardware
platforms: On SGX platforms, Protected Audio Video
Path (PAVP) is used to create a video surface within the
browser context. From the SGX context DXVA 2.06 is used
to exchange a key with the GPU with which the DRM-
decrypted media content is re-encrypted before being sent
to the surface. Inaccessible to the browser context, the
media is decrypted and decoded directly on the GPU and
then sent to the display device.
The audio pipeline is not mentioned, but with combined
transmission of audio and video signals like in HDMI or
DisplayPort we consider this covered as well.
On platforms with ARM TrustZone, memory sections can
be dedicated to the secure world only and access to these
sections can be limited to certain devices. This ability
is used to store raw video frames, decoded in software
running inside the TEE, to be accessed by the GPU
only. Additionally, a session between the CDM inside the
TEE and the GPU can be authenticated with certificates,
enabling video decoding directly on the GPU similarly to

5both Chromium and Firefox are open source browsers supporting
the EME standard

6DirectX Video Acceleration, a proprietary API available on Mi-
crosoft Windows and Xbox
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Fig. 2. high-level architecture of TBDRM components, source: [17]

the approach taken on SGX systems.

C. TBDRM
In 2009 Yu et al. have proposed a DRM architecture

based on TPM, called TBDRM. [17] Their approach relies
on multiple components checking each others authen-
ticity, relying on the attestation functionality of TPM
for constructing a hardware trust chain and authenticity
checking, and on TPM key management functionality for
binding content to a certain player component.

The high-level architecture of TBDRM is outlined in
Fig. 2. The encrypted content itself can be delivered
independently from the license, which consists out of
a usage policy for the content, its decryption key and
some metadata for describing and identifying the matching
content.
The trust basis for all other client components is provided
by the Attestation Agent (AA). This component can attest
the authenticity and identity of the Version Controller
(VC), which ensures and attests freshness of a license,
the DRM Controller (DC) handling the actual content
decryption and policy enforcement, and the actual media
player component.
When requesting a license, the License Distributor (LD)
decides whether to give a license based on the attested
identity of the DC and the license version requested. At
playback, the trustworthiness of the player component is
first attested to the DRM Controller by the Attestation
Agent, the same is done for the Version Controller after-
wards. If all components are trustworthy to the DC and
the VC also has verified the freshness of the license, the DC
checks the requested usage permission against the usage
policy of the licenses. If access can be granted, the media
content is decrypted with the symmetric key provided by
the license and passed to the player. If the usage policy
mandates a version bump of the license (e. g. for enforcing
a playback number limit), this is done by the VC after
playback.

For implementing this architecture, the authors pro-
posed using several TPM functionality for ensuring the
security (persistent control of content, license integrity/
confidentiality/ freshness) of the DRM system.

In their prototype they ensure a trust chain from the
boot on to each DRM scheme component by measuring
each system boot step, starting at the hardware trust
anchor provided by the TPM. Measuring means the TPM
computing the hash of a component and storing the result
into its internal platform configuration registers, from
where it can be retrieved later. First the TPM measures
the hardware platform configuration, the bootloader con-
taining a kernel measuring agent and the kernel containing
an application measurement agent serving as the AA com-
ponent. A full trust chain can then be established by check-
ing all component’s measurements from the respective
TPM registers. Additionally, the kernel contains the VC
component and the part of the DC responsible for verifying
the trustworthiness of all other components, turning all
components of the system stack from the hardware to the
kernel itself into parts of the trusted computing base. The
player itself and the DC part responsible for interpreting
and deciding on policy rules are running in the user-
space and are isolated from each other. The application
measurement agent and the user-space isolation are done
based on a Linux Security Module running in the kernel,
the latter by preventing processes from accessing other
processes’ address space e. g. using ptrace.
The bind mechanism for making license data only
accessible to certain components is based on the TPM
key management mechanism immigratable key and key
certification. For binding a license to the current DC, a
new immigratable asymmetric keypair is created. When
acquiring a license, the public key of that pair is certified
by the TPM and sent to the License Distributor. After
verification, the LD uses hybrid encryption for the license
data by encrypting it symmetrically with a fresh key
and encrypting that key asymmetrically with the received
public key of the client. Thus the sent-back license can only
be decrypted and used by the trusted DC. The TBDRM
proposal does not specify whether licenses can be saved to
persistent storage.
Freshness of licenses is ensured within the VC by using
monotonic counters of the TPM. The state of each counter
is bound to the VC and can be stored on disk for persist-
ing. While the paper itself does not go into detail which
cryptographic algorithms are used for persistence, we want
to emphasize the usage of authenticated encryption for
storing such counter values. Malleable or unauthenticated
encryption like plain RSA would not be sufficient for
storing such a small, easy guessable counter value.

The TBDRM paper builds on hardware TPMs con-
forming to the TPM 1.2 specification. This version of
TPM has been deprecated for several years now due to its
cryptographic algorithms having become less secure and
its different implementations being ambiguous. The suc-
cessing version of the specification, TPM 2.0, is backwards
incompatible but provides roughly the same functionality.
Thus porting the TBDRM approach to work with TPM
2.0 should be doable.
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A TPM 2.0 based variant of TBDRM can also become
interesting for vendors not wanting to include a dedicated
TPM chip into their device, but having a CPU with TEE
functionality: With fTPM [7] Microsoft researchers have
presented an implementation of the TPM 2.0 specification
using Trusted Execution Environments, specifically ARM
TrustZone (described in II-C1) as their basis, comple-
mented with some additional hardware components. They
first analyse the shortcomings of TEEs compared with the
functionality provided by TPMs. The shortcomings of the
ARM TrustZone TEE relevant for TBDRM are its lack
of secure storage (required for key storage), lack of secure
persistent counters (used by the VC) and lack of secure
entropy source (used for key generation). For overcoming
these shortcomings, they took different approaches:

• adding additional hardware: replay-protected, authen-
ticated storage (eMMC with replay-protected mem-
ory block), hardware fuses available only to the secure
world as seeds for key generation, a physical entropy
generator

• design compromises: no long-running TEE processes
to increase system stability – cooperative checkpoint-
ing for splitting up RSA key generation into multiple
short steps

• modified TPM 2.0 semantics: changing semantics of
services slightly while still maintaining verifiable se-
curity guarantees

As fTPM requires additional hardware components to
be included already during system design, it can not
be applied to existing devices lacking these components.
But if these small additional requirements are taken care
of during system design, hardware-complemented TEE
features of modern CPUs can provide TPM-compliant
services. This is the case on all ARM-based devices by Mi-
crosoft shipped with the Windows OS, where the required
TPM functionality is provided by fTPM.

IV. Shortcomings

A. shortcomings on open systems

As the aim of this paper is to evaluate the feasibility of
providing DRM protection on otherwise open platforms,
in this section we look at what security challenges arise
for the presented DRM architectures, which parts of the
system need to be secured and which of these can remain
open.

1) authentication at license server: Both the WiDevine
architecture [14] and the TEE-backed HTML5 EME ap-
proach leave an important attack vector uncovered: It is
not specified how CDMs authenticate against the license
server they get the decryption key from. While all informa-
tion between the CDM and the license server is encrypted
and thus meaningless to the browser or other software
in the middle of the communication, on an open system
it should be possible to read, reverse-engineer and even

manipulate the CDM binary7, as they have to be stored
somewhere (SGX and TrustZone do not provide secure
permanent storage) or transmitted to the computer for in-
stallation. Livshitz et al. even mention reverse-engineering
and manipulation in the security objectives of their paper
[9], but do not provide any countermeasures.
Although encrypting the communication between CDM
and license server without parties in the middle being
able to eavesdrop on the license key transferred is in-
deed possible, e.g. using a Diffie-Hellman key exchange
for generating a session key8, the license server can not
check the authenticity of the CDM it is communicating
with. Including a private authentication key into the CDM
binary is insecure as the key could be recovered from
attackers by reverse engineering. And if there is no need
to authenticate the CDM against the license server or
modified CDMs are still able to do that using an extracted
private key, a modified CDM can either deliberately leak
the key or the decrypted content to the untrusted OS.

As a countermeasure we suggest the usage of attestation
mechanisms e. g. remote attestation of SGX or (f)TPM
for verifying the integrity of the used CDM. Especially for
SGX though this is only a starting point and special care
needs to be taken for remote attestation to be successful,
as pointed out in [18].

The Android DRM framework seems to put emphasis on
locking down the whole system with a trusted boot chain
instead, as stated in the Android documentation: “The
combination of hardware security functions, a trusted
boot mechanism, and an isolated secure OS for handling
security functions is critical to providing a secure device.”
[13]
This is also apparent in the light of several apps using the
Android DRM framework not being available on rooted
devices. One example is the Netflix app, which uses the
WiDevine DRM scheme. [19] This app can not be in-
stalled from the Play Store9 on rooted Android devices,
though already installed apps or ones installed through
side-loading still continue to function. This is the case
because installation from Play Store for this app is tied
to the device’s SafetyNet status, which tries to detect
tampering with the device’s software. The Android DRM
framework itself though also offers APIs for getting the
security status of a DRM plug-in (see III-A), including
whether a DRM plug-in fully uses the TEE of a device.
Due to the ambiguous restriction enforcement it remains
unclear whether banning the store installation of such apps
on rooted devices is a sign of Google not fully trusting the
security of TEE-backed DRM even on open devices or if

7under the WIPO copyright treaty or the DMCA this is illegal,
but still technically possible

8although this could become a bit cumbersome in HTML5 EME
as the browser has to relay all steps of the key exchange before actual
payload information can be sent

9Google’s app store for the Android platform, by far the most
popular one and default on Google-certified devices

6



this is just a side effect of administrational policies of the
store. But at least this is not a sign pointing towards the
acceptance of DRM on open platforms.

2) size of the trusted computing base: The advantage
of the approaches where Content Decryption Modules run
inside a TEE is that, given the TEE technology itself is
secure, authentication issues like the ones just described
can be overcome and the cryptographic primitives used
are semantically secure, only the TEE running the (pro-
prietary) CDM itself is part of the TCB. All other software
on the untrusted (virtual) processor, even the operating
system, might be modified freely as all sensitive data (plain
content, cryptographic keys) are never accessible outside
of the secured environment. When using ARM TrustZone
though, care needs to be taken of other code running
within the secure world. As there is only one secure world
available, all programs running within the TEE have to
share the same environment, on top of a special purpose
operating system like the Trusty OS [11] used on Android
devices. There, processes running on top of the OS are
isolated from each other via address space separation,
utilizing the Memory Management Unit (MMU). So at
least the CDM and the trusted OS it is running on are
part of the TCB. In the case of Trusty, even all processes
running on top are bundled with the OS, signed, and then
verified by the firmware at boot similarly to Secure Boot.
And still all vulnerabilities in code belonging to the TCB
are potentially security critical if exploitable, one example
of it shown with a vulnerability in the TEE OS itself. [20]

For the TBDRM approach though the size of the TCB
is even larger, including the whole kernel and TBDRM’s
userland components. Firmware and bootloader are part
of the trust chain and must not be modified for the
DRM system to work, but are not a crucial part of the
TCB as the kernel running on top is measured by the
TPM independently. As the TPM provides important the
cryptography and trust services to the system, it is part
of the TCB as well.
As measured boot is used, modified software components
are not prevented from running but the DRM functionality
would not work on systems not identified as trustworthy.
Thus a dual-boot system can be imagined, where in one
of the systems the kernel can be freely modified while
loosing the ability to play DRM secured content, while
the unchanged other system retains the ability of DRM-
protected playback.

When using UEFI SecureBoot, there needs to be a
trusted path from the firmware to the trusted DRM
software (e. g. a CDM) to be able to verify the authenticity
the component. Additionally, appropriate measures need
to be taken to ensure that data inside the trusted DRM
component can not be read by untrusted processes. This
results in a TCB comprising the whole operating system
and all higher-privilege user land components. Effectively,
this results in a lock-down of the whole system.

In practice, Microsoft requires devices [21] shipped with

the Windows OS to have Secure Boot enabled by de-
fault, verifying boot images against Microsoft’s key. This
requirement has been criticized as it might lead to lock-
down of consumer hardware and the inability to install
alternative operating systems on it.
Earlier versions of the requirements mandated an option to
disable Secure Boot on x86 devices while also mandating
that it must always be enabled on ARM-based devices. [22]
At least on x86 devices as there is a shim bootloader signed
by Microsoft [23], enabling the launch of other unsigned
boot images. The signature of this specific binary could
though be put on the firmware’s deny list through updates.

3) media output on peripherals: The secured rendering
pipeline used in III-B only reaches to the GPU. But how
to transfer the decoded audio and video data to the actual
display device and speakers?
For directly attached screens on devices like smartphones,
tablets or laptops relying on the display bus being physi-
cally hard to eavesdrop on might be a valid compromise.
But as soon as it comes to attaching external display
devices over standardized connectors (HDMI, DVI, Dis-
playPort), direct output grabbing becomes a threat. With
these video output standards transmitting digital data,
the quality loss during grabbing is neglectable. The state-
of-the-art mechanism for DRM protection during trans-
mission is High-bandwidth Digital Content Protection
(HDCP), which encrypts the content on its way to the
display device. But with the master key having leaked and
decryption hardware being available [24], HDCP can be
considered as broken.

B. Further Downsides of DRM
While the usage of TEEs can indeed increase the se-

curity of DRM schemes while at the same time taking
away the need for total system lock-down, there are quite a
number of other issues with the usage of DRM protection
for media. Most of them are less purely technical but
concern the social and political effects of its technical
properties.

The designed purpose of DRM systems is to restrict the
usage of protected media files to follow the exact policies
of the publisher – and that is exactly what it does. The
problem here: The outlined policies of the publisher do not
always cover legal or legitimate use cases of the media.
In their campaign leaflet on DRM and its downsides
[25], the Free Software Foundation Europe outlines several
problems of DRM usage:
DRM protection of media content undermines several
copyright exemption and customer rights. While most
jurisdictions know exemptions for lending works out to
friends and family or making private copies for them, this
copyright exception is not granted when so-called effective
measures of copy protection are taken by the publisher. All
DRM mechanisms are considered as such and are illegal
to circumvent, taking away these user rights. At the same
time we notice that, at least in Germany, collector societies
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are still charging and collecting remuneration fees for this
exception customers are not allowed to use any more. A
similar copyright exemption is the liberty of quotation.
But with DRM protection, it is not possible to e. g. cut a
certain video sequence from a film to embed it into your
own work.
In the United States, there is even the concept of fair
use allowing the remix of existing works to create new
works of art. As DRM systems prevent editing and further
processing of the content, this right is also prevented from
being executed.
In DRM systems only certain pieces of software are allowed
to process the protected content – in the case of TBDRM
these are the players trusted by the license distributor.
Often publishers forget the reliance of disabled people on
certain assistance software. Such screen readers, image or
audio enhancers are rarely on the list of trusted software
able to process the protected content and thus can not
enable disabled people access to the content.

DRM protection is also a threat to the availability of
content, both in the short and in the long term. Recently,
an anecdote [26] raised awareness for this again: After
moving from Australia to Canada, a person lost their abil-
ity re-download several purchased films. This happened
due to regionally-limited licensing deals of the publisher.
While already downloaded film files could still be played
back, because of DRM protection they were tied to a single
device only. Playback of the legally bought films on other
devices would have required a re-download, which was not
possible in that jurisdiction.
This illustrates the downsides of DRM protected content
always being bound to something out of the control of
the consumer who bought it: For acquiring the required
decryption keys, license servers need to be online, reach-
able and supporting the technology required for the media
to be played back. Additionally, these proprietary DRM
schemes are always bound to a certain technology platform
(e. g. ARM TrustZone and Android) with only their
vendor having the ability to make content bought for a
previous technology available on a new platform. While
the Common Encryption standard is a step into the right
direction, we are still in a situation where content regularly
becomes unavailable because of companies going out of
business, deciding not to make old content available on
new platform or switching off licensing servers10. This
is also a threat to preserving cultural heritage, as even
personal backups of the media files are useless without
the non-exportable respective keys.

The seemingly endless possibilities of restrictions moti-
vated companies to also offer business options requiring
heavy user tracking. For example, node locking – binding
content to a specific computer only – causes several DRM
schemes to create detailed profiles of the computer it

10example: in 2008 Microsoft switched off their “Plays for Sure”
licensing servers [27]

is running on and the user’s activities. Because of that
Mozilla decided in their implementation of the HTML5
EME standard to run CDMs only sandboxed, limiting
tracking and privacy intrusion. [28]
As CDMs are proprietary11, both the amount of user
tracking they do and their security can not be evalu-
ated, as under the WIPO agreement reverse-engineering
copy-protection mechanisms is heavily restricted. With
the availability of Trusted Execution Environments and
the usage of attestation, not requiring CDM binaries to
contain secret data any more, it should be possible to
create open source CDMs which can be built reproducibly.

V. Summary

As presented on the examples of the covered DRM
schemes, the usage of hardware support mechanisms –
especially of Trusted Execution Environments – can enable
reliable content protection on systems without having to
lock them down completely. All presented approaches had
shortcomings in the areas of authentication and authentic-
ity checking, size of the locked-down system base (TCB)
or actual output mechanisms, but when combining ideas
from these different schemes the result is more resilient to
threats.

However, the usage of DRM implies several other prob-
lems that are not solved by the usage of hardware support.

VI. Glossary

AA Attestation Agent
API Application Programming Interface
CDM Content Decryption Module
CS Content Server
DC DRM Controller
DMCA Digital Millenium Copyright Act
DRM Digital Rights Management
EME Encrypted Media Extensions
HDCP High-bandwidth Digital Content Protection
IPC inter-process communication
LD License Distributor
MMU Memory Management Unit
OS operating system
PAVP Protected Audio Video Path
SGX Software Guard Extensions
SoC system on a chip
TCB trusted computing base
TEE Trusted Execution Environment
TPM Trusted Platform Module
UEFI Unified Extensible Firmware Interface
VC Version Controller
W3C World Wide Web Consortium
WIPO World Intellectual Property Organization

11The WiDevine architecture overview even mentions this as a key
security concept: “This unique mix of open source and protected
source enables WiDevine DRM to make it easy to create custom
playback applications that are encrypted and secure.” [14]
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