Decentralized Hashtag Search and Subscription for Federated

Social Networks

@schmittlauch@toot.matereal.ecu

22.12.2018

Motivation

With the final standardization of the ActivityPub!
protocol by the W3C, federated social networks
seem to have gained traction again with several new
social servers implementing it?.

But even these current implementations still suf-
fer from a limitation all social networks based on
push-federation still have: They cannot provide a
consistent network-wide view on all public posts
including a certain hashtag. Such a search cur-
rently only returns posts from the instance’s? local
database which have been delivered to the instance
anyways due to other subscriptions. This limits the
user experience compared to centralized mainstream
social networks like Twitter, Tumblr or Facebook.

For the Diaspora* network there exists an imple-
mentation of a centralized federation relay, where
federation servers send all their public posts to and
can register to receive all messages containing a
certain hashtag. But this centralized approach is
against the spirit of federation and decentralization
as it forms a single point of failure and potential
bottleneck.

Planned Work

The push-federation principle of current federated
social networks works on the basis that user iden-
tifiers always include their home instance. Thus
the server responsible for managing subscription
requests and delivering new posts to all subscribers
is always known. But there is no such place for
all messages containing a certain hashtag, as these

Thttp://activitypub.rocks

2Mastodon, Pleroma, PixelFed are examples for general
social networks, with several special-interest software like
FunkWhale adopting the protocol as well

3a federation server domain

can originate from any instance. In federated social
networks it is even not necessary for all instances
to know each other.

I plan to provide such responsible subscription
points as an additional mechanism for ActivityPub-
compatible federation servers:

All participating instances form an overlay network
using a Distributed Hash Table (DHT) as an ad-
dressing and routing mechanism. Responsibility
for a certain hashtag is then distributed over the
DHT’s key space to the closest n nodes. This group
of nodes is then the responsible point for managing
subscriptions. Participating nodes send all messages
containing a certain hashtag to these responsible
nodes, which then forward the posts to all subscrib-
ing instances. The DHT is only used for delegating
and discovering responsibility for hashtags, while
the post delivery happens directly routed between
instances and subscription nodes using normal Ac-
tivityPub push mechanisms.

Additionally to this subscription and relay mecha-
nism I want to provide a method for instances to
query posts under a hashtags even in retrospective
and without subscribing. The reasoning behind this
is that users should be able to first get an impression
of a hashtag’s post history before deciding to sub-
scribe to it, and also be able to get posts published
before their instance subscribed to that hashtag.
For this, the nodes responsible for a hashtag also
need to store the history of posts containing their
hashtag and provide all posts from a requested time
frame to a requesting instance.

Although a network of server instances will not have
a high fluctuation of nodes, measures need to be
taken to provide some redundancy of responsible
nodes per hashtag. There also needs to be a mecha-
nism for transfering the stored message history to


http://activitypub.rocks
https://joinmastodon.org
https://pleroma.social
https:pixelfed.org

new nodes.

One possible problem that might arise is balancing
the load of “hot-spot” nodes responsible for popular
hashtags. Real-world data has to be analyzed to
estimate whether load balancing and storage dis-
tribution mechanisms are necessary even within a
hashtag.

The system performance shall at least be able to han-
dle the throughput present in existing centralised
networks.

For Twitter this means dealing with a global mes-
sage rate of averagely 1620 posts per second, with
peaks going up to 143,199 posts per second*. But
only an eventually-consistent view is needed, posts
are allowed to need up to a few minutes to propa-
gate through the network.

These performance requirements are going to be
evaluated at least by calculations or even by simu-
lations of such a system. It needs to be evaluated
whether relaying only references to a post creates
a sufficient performance, or whether relaying the
posts themselves is needed.

Security Objectives

As this approach shall only be used to federate
public posts, confidentiality is not a big issue. It is
worth to be evaluated though how good deletion/
recall of posts can work in such a network.

Posts are signed like in current ActivityPub im-
plementations for providing a way to verify their
integrity. But the more important aspect of integrity
is that an attacker must not be able to deliberately
gain the responsibility for a certain hashtag and
then silently drop messages. The integrity of the
message history itself needs to be ensured.

At a further look, depending on the stored content a
way to transparently exclude messages from a node’s
store due to legal reasons might be necessary.

4https://blog.twitter.com/official/en__us/a/2011/num
bers.html


https://blog.twitter.com/official/en_us/a/2011/numbers.html
https://blog.twitter.com/official/en_us/a/2011/numbers.html

	Motivation
	Planned Work
	Security Objectives


