accumulate all statistic/ measurement events to a measurement summary

- RingMap can now be mapped over
This commit is contained in:
Trolli Schmittlauch 2020-09-07 13:00:15 +02:00
parent 4d2d6faf1b
commit c823e6357a
2 changed files with 114 additions and 5 deletions

View file

@ -19,7 +19,7 @@ import qualified Data.ByteString.Lazy.UTF8 as BSUL
import qualified Data.ByteString.UTF8 as BSU
import qualified Data.HashMap.Strict as HMap
import qualified Data.HashSet as HSet
import Data.Maybe (isJust)
import Data.Maybe (isJust, fromJust)
import Data.String (fromString)
import Data.Text.Lazy (Text)
import qualified Data.Text.Lazy as Txt
@ -56,6 +56,7 @@ data PostService d = PostService
, postFetchQueue :: TQueue PostID
, migrationsInProgress :: TVar (HMap.HashMap NodeID (MVar ()))
, httpMan :: HTTP.Manager
, statsQueue :: TQueue StatsEvent
}
deriving (Typeable)
@ -84,9 +85,10 @@ instance DHT d => Service PostService d where
postFetchQueue' <- newTQueueIO
migrationsInProgress' <- newTVarIO HMap.empty
httpMan' <- HTTP.newManager HTTP.defaultManagerSettings
statsQueue' <- newTQueueIO
let
thisService = PostService {
serviceConf = conf
thisService = PostService
{ serviceConf = conf
, baseDHT = dht
, serviceThread = threadVar
, subscribers = subscriberVar
@ -96,7 +98,8 @@ instance DHT d => Service PostService d where
, postFetchQueue = postFetchQueue'
, migrationsInProgress = migrationsInProgress'
, httpMan = httpMan'
}
, statsQueue = statsQueue'
}
port' = fromIntegral (confServicePort conf)
warpSettings = Warp.setPort port' . Warp.setHost (fromString . confServiceHost $ conf) $ Warp.defaultSettings
-- Run 'concurrently_' from another thread to be able to return the
@ -599,3 +602,98 @@ fetchTagPosts serv = forever $ do
-- TODO error handling, retry
pure ()
-- ======= statistics/measurement and logging =======
data StatsEventType = PostPublishEvent
-- ^ initial publishing of a post by an instance
| RelayReceiveEvent
-- ^ receiving of posts because of being the responsible relay, for estimation of \tau_t
-- TODO: record for which hashtag
| RelayDeliveryEvent
-- ^ delivering (or at least attempt) a post to a subscriber
| IncomingPostFetchEvent
-- ^ another instance fetches a post from this instance
deriving (Enum, Show, Eq)
-- | Represents measurement event of a 'StatsEventType' with a count relevant for a certain key
data StatsEvent = StatsEvent StatsEventType Int NodeID
-- TODO: make delay configurable
statsAccuDelay = 300000
-- | periodically flush the stats queue and accumulate all events inside
accumulateStatsThread :: TQueue StatsEvent -> IO ()
accumulateStatsThread statsQ = getPOSIXTime >>= flushLoop
where
flushLoop previousRun = do
now <- getPOSIXTime
-- TODO: instead of letting the events accumulate in the queue and allocate linear memory, immediately fold the result
-- but how to achieve the periodicity when blocking on a queue?
-- idea: let another thread periodically exchange the RelayStats, modify it atomically (Konzept "unterm Arsch wegziehen")
threadDelay statsAccuDelay
latestEvents <- atomically $ flushTQueue statsQ
-- accumulate the events
-- and now what? write a log to file, probably as a forkIO
-- persistently store in a TVar so it can be retrieved later by the DHT
flushLoop now
accumulateStats :: POSIXTime -> [StatsEvent] -> RelayStats
accumulateStats timeInterval events =
-- first sum all event numbers, then divide through number of seconds passed to
-- get rate per second
RelayStats
{ relayReceiveRates = mapRMap (/ intervalSeconds) $ relayReceiveRates summedStats
, relayDeliveryRates = mapRMap (/ intervalSeconds) $ relayDeliveryRates summedStats
, postPublishRate = postPublishRate summedStats / intervalSeconds
, postFetchRate = postFetchRate summedStats / intervalSeconds
}
where
intervalSeconds = fromIntegral (fromEnum timeInterval) / 10^12
summedStats = foldl (\stats event -> case event of
StatsEvent PostPublishEvent num _ ->
stats {postPublishRate = fromIntegral num + postPublishRate stats}
StatsEvent RelayReceiveEvent num key ->
stats {relayReceiveRates = sumIfEntryExists key (fromIntegral num) (relayReceiveRates stats)}
StatsEvent RelayDeliveryEvent num key ->
stats {relayDeliveryRates = sumIfEntryExists key (fromIntegral num) (relayDeliveryRates stats)}
StatsEvent IncomingPostFetchEvent num _ ->
stats {postFetchRate = fromIntegral num + postFetchRate stats}
)
emptyStats
events
sumIfEntryExists = addRMapEntryWith (\newVal oldVal ->
let toInsert = fromJust $ extractRingEntry newVal
in
case oldVal of
KeyEntry n -> KeyEntry (n + toInsert)
ProxyEntry pointer (Just (KeyEntry n)) -> ProxyEntry pointer (Just (KeyEntry $ n + toInsert))
ProxyEntry pointer Nothing -> ProxyEntry pointer (Just newVal)
_ -> error "RingMap nested too deeply"
)
-- idea: first just sum with foldl, and then map the time division over all values
emptyStats :: RelayStats
emptyStats = RelayStats
{ relayReceiveRates = emptyRMap
, relayDeliveryRates = emptyRMap
, postFetchRate = 0
, postPublishRate = 0
}
-- | measured rates of relay performance
-- TODO: maybe include other metrics in here as well, like number of subscribers?
data RelayStats = RelayStats
{ relayReceiveRates :: RingMap NodeID Double
-- ^ rate of incoming posts in the responsibility of this relay
, relayDeliveryRates :: RingMap NodeID Double
-- ^ rate of relayed outgoing posts
, postFetchRate :: Double -- no need to differentiate between tags
-- ^ number of post-fetches delivered
, postPublishRate :: Double
-- ^ rate of initially publishing posts through this instance
}

View file

@ -133,7 +133,7 @@ rMapLookupPred :: (Bounded k, Ord k, Num k)
rMapLookupPred = lookupWrapper Map.lookupLT Map.lookupLE Backwards
addRMapEntryWith :: (Bounded k, Ord k)
=> (RingEntry k a -> RingEntry k a -> RingEntry k a)
=> (RingEntry k a -> RingEntry k a -> RingEntry k a) -- ^ f new_value mold_value
-> k -- ^ key
-> a -- ^ value
-> RingMap k a
@ -247,3 +247,14 @@ takeRMapSuccessorsFromTo :: (Bounded k, Ord k, Num k)
-> RingMap k a
-> [a]
takeRMapSuccessorsFromTo fromVal toVal rmap = takeEntriesUntil_ rmap rMapLookupSucc toVal fromVal Nothing []
-- | map a function over all payload values of a 'RingMap'
mapRMap :: (Bounded k, Ord k, Num k)
=> (a -> b) -> RingMap k a -> RingMap k b
mapRMap f = RingMap . Map.map traversingF . getRingMap
where
--traversingF :: RingEntry k a -> RingEntry k b
traversingF (KeyEntry a) = KeyEntry (f a)
traversingF (ProxyEntry pointer (Just entry)) = ProxyEntry pointer (Just $ traversingF entry)
traversingF (ProxyEntry pointer Nothing) = ProxyEntry pointer Nothing