Compare commits
28 commits
Author | SHA1 | Date | |
---|---|---|---|
|
f46b2cdd9f | ||
|
c18dde9cc4 | ||
|
412b572afb | ||
|
03c5fb612d | ||
|
d6f3eb9dd3 | ||
|
9574aca0b9 | ||
|
52a2f0ca2f | ||
|
ab58830fcb | ||
|
3ccbed4d3a | ||
|
2a214b93bd | ||
|
a719dd974c | ||
|
460a4a8166 | ||
|
dd18b64203 | ||
|
22196bdfa6 | ||
|
d88e5d9e91 | ||
|
be28f9b11f | ||
|
435291679b | ||
|
304dc401f7 | ||
|
0874188b06 | ||
|
457eaf74be | ||
|
e82512f2b0 | ||
|
3b8fd60ede | ||
|
58c386175e | ||
|
b68ff321bb | ||
|
21f78a0479 | ||
|
f9f852ced1 | ||
|
26c229929d | ||
|
626ffdd4e2 |
|
@ -2,7 +2,7 @@
|
|||
|
||||
## Tooling
|
||||
|
||||
- Python 3.5
|
||||
- Python 3.6
|
||||
- [MyPy](http://www.mypy-lang.org/ ) für statische Typchecks
|
||||
- [Pandoc](https://pandoc.org/ ) für die Dokumentation
|
||||
- Python Module: siehe [requirements.txt](https://pip.pypa.io/en/latest/user_guide/#requirements-files )
|
||||
|
|
23
Readme.txt
Normal file
23
Readme.txt
Normal file
|
@ -0,0 +1,23 @@
|
|||
README
|
||||
-----
|
||||
|
||||
Für die Ausführung des Algorithmus wird Python 3 (empfohlene Version: 3.6.1) benötigt.
|
||||
Die Packages, die zusätzlich gebraucht werden, können der requirements.txt entnommen werden.
|
||||
(Installation kann hier einzeln oder über den Befehl: python -m pip install -r requirements.txt)
|
||||
|
||||
Zur Ausführung bitte im Terminal in den Ordner src gehen und dort das Skript main.py starten.
|
||||
Parameter, die hierbei möglich sind:
|
||||
-h zeigt alle Optionen an
|
||||
-p aktiviert die Ausgabe über den Plotter als Diagramm
|
||||
-l wird benötigt falls die Eingabe eine Liste von Problemen ist (d.h. für jobshop1.txt)
|
||||
-i Index des Problems in der Liste (nur relevant bei -l)
|
||||
-t setzt die Starttemperatur des Simulated Annealings
|
||||
-s setzt die maximalen Umformungsschritte pro Generierung einer neuen Lösung
|
||||
-a setzt die Wahrscheinlichkeit, pro Umformungsschritt auch eine Lösung zu akzeptieren, obwohl
|
||||
noch nicht die maximalen Umformungsschritte erreicht sind
|
||||
|
||||
-t -s und -a müssen nicht alle gesetzt sein, dann wird der jeweilige Defaultwert verwendet
|
||||
Defaultwerte: max_temp = 300, max_steps = 250, accept_prob = 0.01
|
||||
|
||||
Beispielaufruf:
|
||||
python .\main.py -p -l -i 2 -t 50 ..\inputdata\jobshop1.txt
|
36
doc.md
Normal file
36
doc.md
Normal file
|
@ -0,0 +1,36 @@
|
|||
## scheduling problem defined by:
|
||||
1. $m$ specialized machines
|
||||
2. tasks $\tau$ of the form $(e, i)$ with $t \in \mathbb{N}$ the execution time and $i \in \{1,2,\dots,m\}$ the machine the task has to run on
|
||||
3. $n$ jobs $T_k$ with $\forall T_k:$ linear order of tasks, with $k \in \{1,2,\dots,n\}$
|
||||
4. Additionally, a multiset $\Omega$ of arbitrary but fixed size that contains wait states $\omega := (1, i)$ with $i \in \{1,2,\dots,m\}$ the blocked machine.
|
||||
|
||||
The goal is to find the fastest feasible schedule $\sigma_{min}$.
|
||||
|
||||
## evaluative function
|
||||
- minimize the execution time of $\sigma$
|
||||
- upper bound: largest processing time first
|
||||
- lower bound: max sum of execution times on one machine
|
||||
|
||||
## solutions
|
||||
- list of tuples $(t, \tau)$ with $t \in \mathbb{N}$ the scheduled begin of $\tau$
|
||||
|
||||
## operations
|
||||
- $\operatorname{ins}(\omega, t)$: block a machine at time $t$ for $w$ time steps.
|
||||
- $\operatorname{xchg}(\tau_1,\tau_2)$: exchange the position of two tasks.
|
||||
|
||||
Both operations require that the start times are recomputed.
|
||||
|
||||
## neighbourhood of solution
|
||||
|
||||
- $\operatorname{neighbours}(\sigma) = \{x \in \Sigma | \delta(\sigma, x) \leq n\}$ with $\Sigma$ the set of all feasible schedules.
|
||||
- $\delta$: $\delta ( \sigma )=0$, $\delta ( \operatorname{op}(x)) = \delta (x) + 1$ (ass. ins has the same penalty xchg has), $x$ either op($y$) or $\sigma$
|
||||
|
||||
## constraints
|
||||
- only schedule new $\tau$ if another $\tau$ is finished
|
||||
- only schedule $\tau \in T_k$ that has no unscheduled predecessor in $T_k$
|
||||
- only one task on a machine any given time
|
||||
|
||||
## implementation in Python
|
||||
- translate problem into list of jobs, jobs into lists of tasks, ie problem = [$T_0, T_1,\dots,T_{k-1}$], $T_i$ = [$\tau_1,\tau_2,\dots$]
|
||||
- address tasks based on their indices, ie [0][1] is the second task of the first job.
|
||||
- compute only one possible next solution, rate, drop/accept. $\delta$ is computed iteratively during generation
|
2
notes.md
2
notes.md
|
@ -26,7 +26,7 @@
|
|||
- $S = \left\{(o_j,t) | o_j \in O \cup \left\{w_n | n \in \mathbb{N} \wedge w_n \text{ v.d.F. } (1, m) \right\} \wedge o_j \text{ v.d.F. } (d, m, j) \wedge t \in T \forall o \in O : \exists (o,t) \in S\right\}$
|
||||
- indirekt lässt sich durch laufende Operation und Zeitpunkt auch Belegung einer Maschine zu einem Zeitpunkt ermitteln
|
||||
- Optimierung: sparse speichern
|
||||
1. Liste von (T, $o_j$) mit $T \in \mathbb{N}$ (Time), $o_j \in O$ (Tasks)
|
||||
1. Liste von (T, $o_j$) mit $T \in \mathbb{N}$ (Time), $o_j \in O$ (Tasks), j bezeichnet den Job
|
||||
- Operationen:
|
||||
- Vertauschen von 2 Jobs auf einer Maschine, selbstinvers
|
||||
- Verzögern von Operationen (keine expliziten Wartezustände nötig)
|
||||
|
|
|
@ -1,2 +1,5 @@
|
|||
mypy
|
||||
Arpeggio
|
||||
arpeggio
|
||||
matplotlib
|
||||
numpy
|
||||
tkinter
|
3
shell.nix
Normal file
3
shell.nix
Normal file
|
@ -0,0 +1,3 @@
|
|||
with import <nixpkgs> {};
|
||||
|
||||
(python3.withPackages (ps: [ps.numpy (ps.matplotlib.override {enableQt=true;}) ps.mypy ps.arpeggio])).env
|
0
src/Generator/__init__.py
Normal file
0
src/Generator/__init__.py
Normal file
|
@ -39,6 +39,7 @@ def accept(solution):
|
|||
random solution.
|
||||
"""
|
||||
return tighten(solution)
|
||||
#return solution
|
||||
|
||||
|
||||
def tighten(solution):
|
||||
|
|
0
src/Output/__init__.py
Normal file
0
src/Output/__init__.py
Normal file
32
src/Output/output.py
Normal file
32
src/Output/output.py
Normal file
|
@ -0,0 +1,32 @@
|
|||
from matplotlib import pyplot as plt
|
||||
from matplotlib import colors
|
||||
from matplotlib import patches
|
||||
import numpy as np
|
||||
from SchedulingAlgorithms.simanneal import rate
|
||||
import random
|
||||
|
||||
def create_plot(problem, solution):
|
||||
|
||||
end = rate(solution)
|
||||
|
||||
with plt.xkcd():
|
||||
fig,ax = plt.subplots()
|
||||
col = colors.XKCD_COLORS
|
||||
del col['xkcd:white']
|
||||
colorlist = list(col.values())
|
||||
random.shuffle(colorlist)
|
||||
for m in range(0, problem.machines):
|
||||
mach_ops = [ x for x in solution if problem.problem_data[x[1][0]][x[1][1]][1] == m ]
|
||||
xranges = [ (x[0], problem.problem_data[x[1][0]][x[1][1]][0]) for x in mach_ops ]
|
||||
ax.broken_barh(xranges, ((problem.machines - m)*10, 9),
|
||||
facecolors=[colorlist[x[1][0]] for x in mach_ops])
|
||||
ax.set_ylim(5, 5 + (problem.machines+1)*10)
|
||||
ax.set_xlim(0, 1.25 * end)
|
||||
ax.set_yticks([15 + m * 10 for m in range(0, problem.machines)])
|
||||
ax.set_yticklabels([ problem.machines - 1 - m for m in range(0, problem.machines)] )
|
||||
handlecolors = colorlist[0:problem.jobs]
|
||||
handles = [ patches.Patch(color = handlecolors[j], label = "Job "+str(j)) for j in range(0,problem.jobs) ]
|
||||
labels = ["Job "+str(j) for j in range(0,problem.jobs)]
|
||||
ax.legend(handles, labels)
|
||||
|
||||
plt.show()
|
|
@ -6,33 +6,33 @@ from collections.abc import Mapping
|
|||
__all__ = ["js1_style", "js2_style"]
|
||||
|
||||
grammar = """
|
||||
# starting point for jobshop1 input file
|
||||
// starting point for jobshop1 input file
|
||||
job_shop1 = skip_preface
|
||||
# eat away lines of preface, until first problem_instance is
|
||||
# encountered; then the list of instances start
|
||||
// eat away lines of preface, until first problem_instance is
|
||||
// encountered; then the list of instances start
|
||||
skip_preface = (!problem_instance r"[^\n]+" skip_preface) / (eol skip_preface) / instance_list
|
||||
instance_list = problem_instance (sep_line trim_ws eol problem_instance eol?)* eof_sep
|
||||
problem_instance = trim_ws "instance" ' ' instance_name trim_ws eol trim_ws eol sep_line description eol problem_data
|
||||
description = r"[^\n]*"
|
||||
instance_name = r"\w+"
|
||||
sep_line = trim_ws plus_line trim_ws eol
|
||||
# lines out of multiple + signs
|
||||
// lines out of multiple + signs
|
||||
plus_line = r"\+\+\++"
|
||||
# EOF is a builtin rule matching end of file
|
||||
// EOF is a builtin rule matching end of file
|
||||
eof_sep = trim_ws plus_line " EOF " plus_line trim_ws eol* EOF
|
||||
# entry point for jobshop2 input files
|
||||
// entry point for jobshop2 input files
|
||||
job_shop2 = problem_data EOF
|
||||
problem_data = trim_ws num_jobs ' ' num_machines eol job_data+
|
||||
# used for skipping arbitrary number of non-breaking whitespace
|
||||
// used for skipping arbitrary number of non-breaking whitespace
|
||||
trim_ws = r'[ \t]*'
|
||||
# git may change line-endings on windows, so we have to match on both
|
||||
// git may change line-endings on windows, so we have to match on both
|
||||
eol = "\n" / "\r\n"
|
||||
nonneg_num = r'\d+'
|
||||
num_jobs = nonneg_num
|
||||
num_machines = nonneg_num
|
||||
machine = nonneg_num
|
||||
duration = nonneg_num
|
||||
# task data for 1 job
|
||||
// task data for 1 job
|
||||
job_data = ' '* machine ' '+ duration (' '+ machine ' '+ duration)* trim_ws eol
|
||||
"""
|
||||
|
||||
|
|
0
src/SchedulingAlgorithms/__init__.py
Normal file
0
src/SchedulingAlgorithms/__init__.py
Normal file
|
@ -1,7 +1,10 @@
|
|||
INSTANCES = [(5, 5)]
|
||||
TASKS = [[(1, 21), (0, 53), (4, 95), (3, 55), (2, 35)],
|
||||
[(0, 21), (3, 52), (4, 16), (2, 26), (1, 71)],
|
||||
[(3, 39), (4, 98), (1, 42), (2, 31), (0, 12)],
|
||||
[(1, 77), (0, 55), (4, 79), (2, 66), (3, 77)],
|
||||
[(0, 83), (3, 34), (2, 64), (1, 19), (4, 37)]]
|
||||
import Parser.js1_style as p
|
||||
#import Parser.js2_style as p
|
||||
from SchedulingAlgorithms import simanneal as sim
|
||||
from Output import output as o
|
||||
|
||||
problem = p.parse_file("../inputdata/jobshop1.txt")[0]
|
||||
#problem = p.parse_file("../inputdata/sample")
|
||||
sim.init(problem)
|
||||
solution = sim.anneal()
|
||||
o.create_plot(problem, solution)
|
97
src/main.py
97
src/main.py
|
@ -1,6 +1,97 @@
|
|||
#! /usr/bin/env python
|
||||
def main() -> None:
|
||||
pass
|
||||
|
||||
if "__name__" == "__main__":
|
||||
import sys
|
||||
import getopt
|
||||
from SchedulingAlgorithms import simanneal as sim
|
||||
from Output import output as o
|
||||
|
||||
|
||||
def usage():
|
||||
s= """
|
||||
Command line options:
|
||||
-h show this help
|
||||
-p activate pretty output (requires tkinter)
|
||||
-l assume that a file contains multiple problems, default is only 1
|
||||
-i index of the problem you want solved. has no effect without l
|
||||
-t set parameter max_temp of simulated annealing
|
||||
-s set parameter max_steps of simulated annealing
|
||||
-a set parameter accept_prob of simulated annealing
|
||||
|
||||
Invocation:
|
||||
python [-hlp] file
|
||||
"""
|
||||
return s
|
||||
|
||||
|
||||
def main():
|
||||
js1 = False
|
||||
plot = False
|
||||
try:
|
||||
opts, args = getopt.getopt(sys.argv[1:], 'hpli:t:s:a:')
|
||||
except getopt.GetoptError as err:
|
||||
print(err)
|
||||
sys.exit()
|
||||
if ('-h', '') in opts:
|
||||
print(usage())
|
||||
if ('-p', '') in opts:
|
||||
print("Plotting enabled.")
|
||||
from Output import output as o
|
||||
plot = True
|
||||
if('-l', '') in opts:
|
||||
js1 = True
|
||||
idx = [int(x[1]) for x in opts if x[0]=='-i']
|
||||
idx = idx[0] if idx else -1
|
||||
max_temp = [int(x[1]) for x in opts if x[0]=='-t']
|
||||
max_temp = max_temp[0] if max_temp else -1
|
||||
max_steps = [int(x[1]) for x in opts if x[0]=='-s']
|
||||
max_steps = max_steps[0] if max_steps else -1
|
||||
accept_prob = [int(x[1]) for x in opts if x[0]=='-a']
|
||||
accept_prob = accept_prob[0] if accept_prob else -1
|
||||
if not args:
|
||||
print("No file given.")
|
||||
sys.exit()
|
||||
else:
|
||||
infile = args[0]
|
||||
if js1:
|
||||
from Parser import js1_style as parser
|
||||
else:
|
||||
from Parser import js2_style as parser
|
||||
print("Parsing file: " + infile)
|
||||
problem = parser.parse_file(infile)
|
||||
if js1:
|
||||
print("File contains " + str(len(problem)) + " problems.")
|
||||
if idx == -1:
|
||||
idx = int(input("Which problem do you want so solve? [0-" + str(len(problem)-1) + "] "))
|
||||
problem = problem[idx]
|
||||
print(problem)
|
||||
sim.init(problem)
|
||||
if not max_temp == -1:
|
||||
if not max_steps == -1:
|
||||
if not accept_prob == -1:
|
||||
solution = sim.anneal(max_temp, max_steps, accept_prob)
|
||||
else:
|
||||
solution = sim.anneal(max_temp = max_temp, max_steps = max_steps)
|
||||
else:
|
||||
if not accept_prob == -1:
|
||||
solution = sim.anneal(max_temp = max_temp, accept_prob = accept_prob)
|
||||
else:
|
||||
solution = sim.anneal(max_temp = max_temp)
|
||||
else:
|
||||
if not max_steps == -1:
|
||||
if not accept_prob == -1:
|
||||
solution = sim.anneal(max_steps = max_steps, accept_prob = accept_prob)
|
||||
else:
|
||||
solution = sim.anneal(max_steps = max_steps)
|
||||
else:
|
||||
if not accept_prob == -1:
|
||||
solution = sim.anneal(accept_prob = accept_prob)
|
||||
else:
|
||||
solution = sim.anneal()
|
||||
print(solution)
|
||||
print(sim.rate(solution))
|
||||
if plot:
|
||||
o.create_plot(problem, solution)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
|
Loading…
Reference in a new issue