Compare commits
No commits in common. "master" and "simanneal" have entirely different histories.
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
## Tooling
|
## Tooling
|
||||||
|
|
||||||
- Python 3.6
|
- Python 3.5
|
||||||
- [MyPy](http://www.mypy-lang.org/ ) für statische Typchecks
|
- [MyPy](http://www.mypy-lang.org/ ) für statische Typchecks
|
||||||
- [Pandoc](https://pandoc.org/ ) für die Dokumentation
|
- [Pandoc](https://pandoc.org/ ) für die Dokumentation
|
||||||
- Python Module: siehe [requirements.txt](https://pip.pypa.io/en/latest/user_guide/#requirements-files )
|
- Python Module: siehe [requirements.txt](https://pip.pypa.io/en/latest/user_guide/#requirements-files )
|
||||||
|
|
23
Readme.txt
23
Readme.txt
|
@ -1,23 +0,0 @@
|
||||||
README
|
|
||||||
-----
|
|
||||||
|
|
||||||
Für die Ausführung des Algorithmus wird Python 3 (empfohlene Version: 3.6.1) benötigt.
|
|
||||||
Die Packages, die zusätzlich gebraucht werden, können der requirements.txt entnommen werden.
|
|
||||||
(Installation kann hier einzeln oder über den Befehl: python -m pip install -r requirements.txt)
|
|
||||||
|
|
||||||
Zur Ausführung bitte im Terminal in den Ordner src gehen und dort das Skript main.py starten.
|
|
||||||
Parameter, die hierbei möglich sind:
|
|
||||||
-h zeigt alle Optionen an
|
|
||||||
-p aktiviert die Ausgabe über den Plotter als Diagramm
|
|
||||||
-l wird benötigt falls die Eingabe eine Liste von Problemen ist (d.h. für jobshop1.txt)
|
|
||||||
-i Index des Problems in der Liste (nur relevant bei -l)
|
|
||||||
-t setzt die Starttemperatur des Simulated Annealings
|
|
||||||
-s setzt die maximalen Umformungsschritte pro Generierung einer neuen Lösung
|
|
||||||
-a setzt die Wahrscheinlichkeit, pro Umformungsschritt auch eine Lösung zu akzeptieren, obwohl
|
|
||||||
noch nicht die maximalen Umformungsschritte erreicht sind
|
|
||||||
|
|
||||||
-t -s und -a müssen nicht alle gesetzt sein, dann wird der jeweilige Defaultwert verwendet
|
|
||||||
Defaultwerte: max_temp = 300, max_steps = 250, accept_prob = 0.01
|
|
||||||
|
|
||||||
Beispielaufruf:
|
|
||||||
python .\main.py -p -l -i 2 -t 50 ..\inputdata\jobshop1.txt
|
|
36
doc.md
36
doc.md
|
@ -1,36 +0,0 @@
|
||||||
## scheduling problem defined by:
|
|
||||||
1. $m$ specialized machines
|
|
||||||
2. tasks $\tau$ of the form $(e, i)$ with $t \in \mathbb{N}$ the execution time and $i \in \{1,2,\dots,m\}$ the machine the task has to run on
|
|
||||||
3. $n$ jobs $T_k$ with $\forall T_k:$ linear order of tasks, with $k \in \{1,2,\dots,n\}$
|
|
||||||
4. Additionally, a multiset $\Omega$ of arbitrary but fixed size that contains wait states $\omega := (1, i)$ with $i \in \{1,2,\dots,m\}$ the blocked machine.
|
|
||||||
|
|
||||||
The goal is to find the fastest feasible schedule $\sigma_{min}$.
|
|
||||||
|
|
||||||
## evaluative function
|
|
||||||
- minimize the execution time of $\sigma$
|
|
||||||
- upper bound: largest processing time first
|
|
||||||
- lower bound: max sum of execution times on one machine
|
|
||||||
|
|
||||||
## solutions
|
|
||||||
- list of tuples $(t, \tau)$ with $t \in \mathbb{N}$ the scheduled begin of $\tau$
|
|
||||||
|
|
||||||
## operations
|
|
||||||
- $\operatorname{ins}(\omega, t)$: block a machine at time $t$ for $w$ time steps.
|
|
||||||
- $\operatorname{xchg}(\tau_1,\tau_2)$: exchange the position of two tasks.
|
|
||||||
|
|
||||||
Both operations require that the start times are recomputed.
|
|
||||||
|
|
||||||
## neighbourhood of solution
|
|
||||||
|
|
||||||
- $\operatorname{neighbours}(\sigma) = \{x \in \Sigma | \delta(\sigma, x) \leq n\}$ with $\Sigma$ the set of all feasible schedules.
|
|
||||||
- $\delta$: $\delta ( \sigma )=0$, $\delta ( \operatorname{op}(x)) = \delta (x) + 1$ (ass. ins has the same penalty xchg has), $x$ either op($y$) or $\sigma$
|
|
||||||
|
|
||||||
## constraints
|
|
||||||
- only schedule new $\tau$ if another $\tau$ is finished
|
|
||||||
- only schedule $\tau \in T_k$ that has no unscheduled predecessor in $T_k$
|
|
||||||
- only one task on a machine any given time
|
|
||||||
|
|
||||||
## implementation in Python
|
|
||||||
- translate problem into list of jobs, jobs into lists of tasks, ie problem = [$T_0, T_1,\dots,T_{k-1}$], $T_i$ = [$\tau_1,\tau_2,\dots$]
|
|
||||||
- address tasks based on their indices, ie [0][1] is the second task of the first job.
|
|
||||||
- compute only one possible next solution, rate, drop/accept. $\delta$ is computed iteratively during generation
|
|
2
notes.md
2
notes.md
|
@ -26,7 +26,7 @@
|
||||||
- $S = \left\{(o_j,t) | o_j \in O \cup \left\{w_n | n \in \mathbb{N} \wedge w_n \text{ v.d.F. } (1, m) \right\} \wedge o_j \text{ v.d.F. } (d, m, j) \wedge t \in T \forall o \in O : \exists (o,t) \in S\right\}$
|
- $S = \left\{(o_j,t) | o_j \in O \cup \left\{w_n | n \in \mathbb{N} \wedge w_n \text{ v.d.F. } (1, m) \right\} \wedge o_j \text{ v.d.F. } (d, m, j) \wedge t \in T \forall o \in O : \exists (o,t) \in S\right\}$
|
||||||
- indirekt lässt sich durch laufende Operation und Zeitpunkt auch Belegung einer Maschine zu einem Zeitpunkt ermitteln
|
- indirekt lässt sich durch laufende Operation und Zeitpunkt auch Belegung einer Maschine zu einem Zeitpunkt ermitteln
|
||||||
- Optimierung: sparse speichern
|
- Optimierung: sparse speichern
|
||||||
1. Liste von (T, $o_j$) mit $T \in \mathbb{N}$ (Time), $o_j \in O$ (Tasks), j bezeichnet den Job
|
1. Liste von (T, $o_j$) mit $T \in \mathbb{N}$ (Time), $o_j \in O$ (Tasks)
|
||||||
- Operationen:
|
- Operationen:
|
||||||
- Vertauschen von 2 Jobs auf einer Maschine, selbstinvers
|
- Vertauschen von 2 Jobs auf einer Maschine, selbstinvers
|
||||||
- Verzögern von Operationen (keine expliziten Wartezustände nötig)
|
- Verzögern von Operationen (keine expliziten Wartezustände nötig)
|
||||||
|
|
|
@ -1,5 +1,2 @@
|
||||||
mypy
|
mypy
|
||||||
arpeggio
|
Arpeggio
|
||||||
matplotlib
|
|
||||||
numpy
|
|
||||||
tkinter
|
|
||||||
|
|
|
@ -1,3 +0,0 @@
|
||||||
with import <nixpkgs> {};
|
|
||||||
|
|
||||||
(python3.withPackages (ps: [ps.numpy (ps.matplotlib.override {enableQt=true;}) ps.mypy ps.arpeggio])).env
|
|
|
@ -39,7 +39,6 @@ def accept(solution):
|
||||||
random solution.
|
random solution.
|
||||||
"""
|
"""
|
||||||
return tighten(solution)
|
return tighten(solution)
|
||||||
#return solution
|
|
||||||
|
|
||||||
|
|
||||||
def tighten(solution):
|
def tighten(solution):
|
||||||
|
|
|
@ -1,32 +0,0 @@
|
||||||
from matplotlib import pyplot as plt
|
|
||||||
from matplotlib import colors
|
|
||||||
from matplotlib import patches
|
|
||||||
import numpy as np
|
|
||||||
from SchedulingAlgorithms.simanneal import rate
|
|
||||||
import random
|
|
||||||
|
|
||||||
def create_plot(problem, solution):
|
|
||||||
|
|
||||||
end = rate(solution)
|
|
||||||
|
|
||||||
with plt.xkcd():
|
|
||||||
fig,ax = plt.subplots()
|
|
||||||
col = colors.XKCD_COLORS
|
|
||||||
del col['xkcd:white']
|
|
||||||
colorlist = list(col.values())
|
|
||||||
random.shuffle(colorlist)
|
|
||||||
for m in range(0, problem.machines):
|
|
||||||
mach_ops = [ x for x in solution if problem.problem_data[x[1][0]][x[1][1]][1] == m ]
|
|
||||||
xranges = [ (x[0], problem.problem_data[x[1][0]][x[1][1]][0]) for x in mach_ops ]
|
|
||||||
ax.broken_barh(xranges, ((problem.machines - m)*10, 9),
|
|
||||||
facecolors=[colorlist[x[1][0]] for x in mach_ops])
|
|
||||||
ax.set_ylim(5, 5 + (problem.machines+1)*10)
|
|
||||||
ax.set_xlim(0, 1.25 * end)
|
|
||||||
ax.set_yticks([15 + m * 10 for m in range(0, problem.machines)])
|
|
||||||
ax.set_yticklabels([ problem.machines - 1 - m for m in range(0, problem.machines)] )
|
|
||||||
handlecolors = colorlist[0:problem.jobs]
|
|
||||||
handles = [ patches.Patch(color = handlecolors[j], label = "Job "+str(j)) for j in range(0,problem.jobs) ]
|
|
||||||
labels = ["Job "+str(j) for j in range(0,problem.jobs)]
|
|
||||||
ax.legend(handles, labels)
|
|
||||||
|
|
||||||
plt.show()
|
|
|
@ -6,33 +6,33 @@ from collections.abc import Mapping
|
||||||
__all__ = ["js1_style", "js2_style"]
|
__all__ = ["js1_style", "js2_style"]
|
||||||
|
|
||||||
grammar = """
|
grammar = """
|
||||||
// starting point for jobshop1 input file
|
# starting point for jobshop1 input file
|
||||||
job_shop1 = skip_preface
|
job_shop1 = skip_preface
|
||||||
// eat away lines of preface, until first problem_instance is
|
# eat away lines of preface, until first problem_instance is
|
||||||
// encountered; then the list of instances start
|
# encountered; then the list of instances start
|
||||||
skip_preface = (!problem_instance r"[^\n]+" skip_preface) / (eol skip_preface) / instance_list
|
skip_preface = (!problem_instance r"[^\n]+" skip_preface) / (eol skip_preface) / instance_list
|
||||||
instance_list = problem_instance (sep_line trim_ws eol problem_instance eol?)* eof_sep
|
instance_list = problem_instance (sep_line trim_ws eol problem_instance eol?)* eof_sep
|
||||||
problem_instance = trim_ws "instance" ' ' instance_name trim_ws eol trim_ws eol sep_line description eol problem_data
|
problem_instance = trim_ws "instance" ' ' instance_name trim_ws eol trim_ws eol sep_line description eol problem_data
|
||||||
description = r"[^\n]*"
|
description = r"[^\n]*"
|
||||||
instance_name = r"\w+"
|
instance_name = r"\w+"
|
||||||
sep_line = trim_ws plus_line trim_ws eol
|
sep_line = trim_ws plus_line trim_ws eol
|
||||||
// lines out of multiple + signs
|
# lines out of multiple + signs
|
||||||
plus_line = r"\+\+\++"
|
plus_line = r"\+\+\++"
|
||||||
// EOF is a builtin rule matching end of file
|
# EOF is a builtin rule matching end of file
|
||||||
eof_sep = trim_ws plus_line " EOF " plus_line trim_ws eol* EOF
|
eof_sep = trim_ws plus_line " EOF " plus_line trim_ws eol* EOF
|
||||||
// entry point for jobshop2 input files
|
# entry point for jobshop2 input files
|
||||||
job_shop2 = problem_data EOF
|
job_shop2 = problem_data EOF
|
||||||
problem_data = trim_ws num_jobs ' ' num_machines eol job_data+
|
problem_data = trim_ws num_jobs ' ' num_machines eol job_data+
|
||||||
// used for skipping arbitrary number of non-breaking whitespace
|
# used for skipping arbitrary number of non-breaking whitespace
|
||||||
trim_ws = r'[ \t]*'
|
trim_ws = r'[ \t]*'
|
||||||
// git may change line-endings on windows, so we have to match on both
|
# git may change line-endings on windows, so we have to match on both
|
||||||
eol = "\n" / "\r\n"
|
eol = "\n" / "\r\n"
|
||||||
nonneg_num = r'\d+'
|
nonneg_num = r'\d+'
|
||||||
num_jobs = nonneg_num
|
num_jobs = nonneg_num
|
||||||
num_machines = nonneg_num
|
num_machines = nonneg_num
|
||||||
machine = nonneg_num
|
machine = nonneg_num
|
||||||
duration = nonneg_num
|
duration = nonneg_num
|
||||||
// task data for 1 job
|
# task data for 1 job
|
||||||
job_data = ' '* machine ' '+ duration (' '+ machine ' '+ duration)* trim_ws eol
|
job_data = ' '* machine ' '+ duration (' '+ machine ' '+ duration)* trim_ws eol
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
|
@ -1,10 +1,7 @@
|
||||||
import Parser.js1_style as p
|
INSTANCES = [(5, 5)]
|
||||||
#import Parser.js2_style as p
|
TASKS = [[(1, 21), (0, 53), (4, 95), (3, 55), (2, 35)],
|
||||||
from SchedulingAlgorithms import simanneal as sim
|
[(0, 21), (3, 52), (4, 16), (2, 26), (1, 71)],
|
||||||
from Output import output as o
|
[(3, 39), (4, 98), (1, 42), (2, 31), (0, 12)],
|
||||||
|
[(1, 77), (0, 55), (4, 79), (2, 66), (3, 77)],
|
||||||
|
[(0, 83), (3, 34), (2, 64), (1, 19), (4, 37)]]
|
||||||
|
|
||||||
problem = p.parse_file("../inputdata/jobshop1.txt")[0]
|
|
||||||
#problem = p.parse_file("../inputdata/sample")
|
|
||||||
sim.init(problem)
|
|
||||||
solution = sim.anneal()
|
|
||||||
o.create_plot(problem, solution)
|
|
97
src/main.py
97
src/main.py
|
@ -1,97 +1,6 @@
|
||||||
#! /usr/bin/env python
|
#! /usr/bin/env python
|
||||||
|
def main() -> None:
|
||||||
|
pass
|
||||||
|
|
||||||
import sys
|
if "__name__" == "__main__":
|
||||||
import getopt
|
|
||||||
from SchedulingAlgorithms import simanneal as sim
|
|
||||||
from Output import output as o
|
|
||||||
|
|
||||||
|
|
||||||
def usage():
|
|
||||||
s= """
|
|
||||||
Command line options:
|
|
||||||
-h show this help
|
|
||||||
-p activate pretty output (requires tkinter)
|
|
||||||
-l assume that a file contains multiple problems, default is only 1
|
|
||||||
-i index of the problem you want solved. has no effect without l
|
|
||||||
-t set parameter max_temp of simulated annealing
|
|
||||||
-s set parameter max_steps of simulated annealing
|
|
||||||
-a set parameter accept_prob of simulated annealing
|
|
||||||
|
|
||||||
Invocation:
|
|
||||||
python [-hlp] file
|
|
||||||
"""
|
|
||||||
return s
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
js1 = False
|
|
||||||
plot = False
|
|
||||||
try:
|
|
||||||
opts, args = getopt.getopt(sys.argv[1:], 'hpli:t:s:a:')
|
|
||||||
except getopt.GetoptError as err:
|
|
||||||
print(err)
|
|
||||||
sys.exit()
|
|
||||||
if ('-h', '') in opts:
|
|
||||||
print(usage())
|
|
||||||
if ('-p', '') in opts:
|
|
||||||
print("Plotting enabled.")
|
|
||||||
from Output import output as o
|
|
||||||
plot = True
|
|
||||||
if('-l', '') in opts:
|
|
||||||
js1 = True
|
|
||||||
idx = [int(x[1]) for x in opts if x[0]=='-i']
|
|
||||||
idx = idx[0] if idx else -1
|
|
||||||
max_temp = [int(x[1]) for x in opts if x[0]=='-t']
|
|
||||||
max_temp = max_temp[0] if max_temp else -1
|
|
||||||
max_steps = [int(x[1]) for x in opts if x[0]=='-s']
|
|
||||||
max_steps = max_steps[0] if max_steps else -1
|
|
||||||
accept_prob = [int(x[1]) for x in opts if x[0]=='-a']
|
|
||||||
accept_prob = accept_prob[0] if accept_prob else -1
|
|
||||||
if not args:
|
|
||||||
print("No file given.")
|
|
||||||
sys.exit()
|
|
||||||
else:
|
|
||||||
infile = args[0]
|
|
||||||
if js1:
|
|
||||||
from Parser import js1_style as parser
|
|
||||||
else:
|
|
||||||
from Parser import js2_style as parser
|
|
||||||
print("Parsing file: " + infile)
|
|
||||||
problem = parser.parse_file(infile)
|
|
||||||
if js1:
|
|
||||||
print("File contains " + str(len(problem)) + " problems.")
|
|
||||||
if idx == -1:
|
|
||||||
idx = int(input("Which problem do you want so solve? [0-" + str(len(problem)-1) + "] "))
|
|
||||||
problem = problem[idx]
|
|
||||||
print(problem)
|
|
||||||
sim.init(problem)
|
|
||||||
if not max_temp == -1:
|
|
||||||
if not max_steps == -1:
|
|
||||||
if not accept_prob == -1:
|
|
||||||
solution = sim.anneal(max_temp, max_steps, accept_prob)
|
|
||||||
else:
|
|
||||||
solution = sim.anneal(max_temp = max_temp, max_steps = max_steps)
|
|
||||||
else:
|
|
||||||
if not accept_prob == -1:
|
|
||||||
solution = sim.anneal(max_temp = max_temp, accept_prob = accept_prob)
|
|
||||||
else:
|
|
||||||
solution = sim.anneal(max_temp = max_temp)
|
|
||||||
else:
|
|
||||||
if not max_steps == -1:
|
|
||||||
if not accept_prob == -1:
|
|
||||||
solution = sim.anneal(max_steps = max_steps, accept_prob = accept_prob)
|
|
||||||
else:
|
|
||||||
solution = sim.anneal(max_steps = max_steps)
|
|
||||||
else:
|
|
||||||
if not accept_prob == -1:
|
|
||||||
solution = sim.anneal(accept_prob = accept_prob)
|
|
||||||
else:
|
|
||||||
solution = sim.anneal()
|
|
||||||
print(solution)
|
|
||||||
print(sim.rate(solution))
|
|
||||||
if plot:
|
|
||||||
o.create_plot(problem, solution)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
main()
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue