Hash2Pub/Hash2Pub/test/FediChordSpec.hs

166 lines
8.6 KiB
Haskell
Raw Normal View History

{-# LANGUAGE OverloadedStrings #-}
module FediChordSpec where
import Test.Hspec
import Control.Exception
import Network.Socket
import qualified Data.Map.Strict as Map
import qualified Data.ByteString as BS
import qualified Data.Set as Set
import Hash2Pub.FediChord
import Hash2Pub.DHTProtocol
spec :: Spec
spec = do
describe "NodeID" $ do
it "can store a numeral ID" $
getNodeID (toNodeID 2342) `shouldBe` 2342
it "computes ID values within the modular bounds" $ do
getNodeID ((maxBound :: NodeID) + toNodeID 2) < getNodeID (maxBound :: NodeID) `shouldBe` True
3 * (maxBound :: NodeID) `shouldBe` fromInteger (-3)
it "local comparison works in the context of preceding/ succeding nodes on a ring" $ do
toNodeID 12 `localCompare` toNodeID 12 `shouldBe` EQ
let
a = toNodeID 3
b = toNodeID 3 - toNodeID 10
a `localCompare` b `shouldBe` GT
b `localCompare` a `shouldBe` LT
-- edge cases
((toNodeID 5001 - toNodeID 2^(255::Integer)) `localCompare` 5001) `shouldBe` LT
(toNodeID 5001 - toNodeID 2^(255::Integer) - 1) `localCompare` 5001 `shouldBe` GT
2020-04-01 13:26:42 +02:00
it "throws an exception when @toNodeID@ on out-of-bound values"
pending
it "can be generated" $ do
2020-04-12 00:17:38 +02:00
genNodeIDBS exampleIp exampleNodeDomain exampleVs `shouldBe` "\ACK\211\183&S\GS\214\247Xn8\216\232\195\247\162\182\253\210\SOHG7I\194\251\196\130\142RSx\219"
genNodeID exampleIp exampleNodeDomain exampleVs `shouldBe` toNodeID 3087945874980469002564169693112490135217795916629034079089428181202645514459
describe "ByteString to Integer conversion" $
it "correctly interprets ByteStrings as unsigned big-endian integers" $ do
2020-03-20 20:25:52 +01:00
byteStringToUInteger (BS.pack $ replicate 32 0xff) `shouldBe` 2^(256::Integer)-1
byteStringToUInteger (BS.pack $ replicate 32 0x00) `shouldBe` 0
byteStringToUInteger (BS.pack [0x00, 0x03, 0xf6, 0x78, 0x10, 0x00]) `shouldBe` 17019965440
2020-03-21 01:13:21 +01:00
describe "key ID" $
it "can be generated" $ do
genKeyIDBS "#sometag" `shouldBe` "\178\239\146\131\166\SYN\ESC\209\205\&3\143\212\145@#\205T\219\152\191\229\ACK|\153<b\199p\147\182&l"
genKeyIDBS "#ÄปӥicоdeTag" `shouldBe` "\f\159\165|D*\SUB\180\SO\202\&0\158\148\238\STX FZ/\184\SOH\188\169\153\154\164\229\&2Ix\SUB\169"
genKeyID "#sometag" `shouldBe` 80934974700514031200587628522801847528706765451025022694022301350330549806700
genKeyID "#ÄปӥicоdeTag" `shouldBe` 5709825004658123480531764908635278432808461265905814952223156184506818894505
describe "NodeState" $ do
2020-04-12 00:17:38 +02:00
it "can be initialised" $
print exampleNodeState
2020-03-20 20:17:27 +01:00
it "can be initialised partly and then modified later" $ do
let ns = NodeState {
nid = undefined
2020-04-12 00:17:38 +02:00
, domain = exampleNodeDomain
, ipAddr = exampleIp
2020-03-20 20:17:27 +01:00
, dhtPort = 2342
, apPort = Nothing
, nodeCache = initCache
2020-03-20 20:17:27 +01:00
, successors = []
, predecessors = []
, kNeighbours = 3
, lNumBestNodes = 3
, pNumParallelQueries = 2
2020-04-01 13:26:42 +02:00
, jEntriesPerSlice = 2
2020-03-20 20:17:27 +01:00
}
nsReady = ns {
nid = genNodeID (ipAddr ns) (domain ns) 3
}
print nsReady
2020-04-12 00:17:38 +02:00
describe "NodeCache" $ do
2020-04-16 01:08:41 +02:00
let
emptyCache = nodeCache exampleNodeState
exampleID = nid exampleNodeState
anotherID = toNodeID 2^(230::Integer)+1
anotherNode = exampleNodeState { nid = anotherID}
maxNode = exampleNodeState { nid = maxBound}
newCache = addCacheEntry exampleNodeState 0 =<< addCacheEntry anotherNode 10 emptyCache
it "entries can be added to a node cache and looked up again" $ do
nC <- newCache
-- the cache includes 2 additional proxy elements right from the start
Map.size nC - Map.size emptyCache `shouldBe` 2
-- normal entry lookup
nid . cacheGetNodeStateUnvalidated <$> cacheLookup anotherID nC `shouldBe` Just anotherID
nid . cacheGetNodeStateUnvalidated <$> cacheLookup (anotherID+1) nC `shouldBe` Nothing
-- initially, the proxy elements store nothing
cacheLookup minBound emptyCache `shouldBe` Nothing
cacheLookup maxBound emptyCache `shouldBe` Nothing
-- now store a node at that ID
cacheWithMaxNode <- addCacheEntry maxNode 0 =<< newCache
nid . cacheGetNodeStateUnvalidated <$> cacheLookup maxBound cacheWithMaxNode `shouldBe` Just maxBound
it "looking up predecessor and successor works like on a modular ring" $ do
-- ignore empty proxy elements in initial cache
nid. cacheGetNodeStateUnvalidated <$> cacheLookupPred (exampleID + 10) emptyCache `shouldBe` Nothing
nid. cacheGetNodeStateUnvalidated <$> cacheLookupSucc exampleID emptyCache `shouldBe` Nothing
nC <- newCache
-- given situation: 0 < nid exampleNodeState < anotherNode < maxBound
-- first try non-modular queries between the 2 stored nodes
nid. cacheGetNodeStateUnvalidated <$> cacheLookupPred (exampleID + 10) nC `shouldBe` Just exampleID
nid. cacheGetNodeStateUnvalidated <$> cacheLookupSucc exampleID nC `shouldBe` Just exampleID
nid. cacheGetNodeStateUnvalidated <$> cacheLookupSucc (exampleID + 10) nC `shouldBe` Just anotherID
-- queries that require a (pseudo)modular structure
nid. cacheGetNodeStateUnvalidated <$> cacheLookupPred (exampleID - 2) nC `shouldBe` Just anotherID
nid. cacheGetNodeStateUnvalidated <$> cacheLookupSucc (anotherID + 2) nC `shouldBe` Just exampleID
-- now store a node in one of the ProxyEntries
cacheWithProxyNodeEntry <- addCacheEntry maxNode 0 =<< newCache
nid. cacheGetNodeStateUnvalidated <$> cacheLookupPred (exampleID - 2) cacheWithProxyNodeEntry `shouldBe` Just maxBound
nid. cacheGetNodeStateUnvalidated <$> cacheLookupSucc (anotherID + 2) cacheWithProxyNodeEntry `shouldBe` Just maxBound
describe "NodeCache query lookup" $ do
let
emptyCache = nodeCache exampleNodeState
nid1 = toNodeID 2^(23::Integer)+1
node1 = exampleNodeState { nid = nid1}
nid2 = toNodeID 2^(230::Integer)+12
node2 = exampleNodeState { nid = nid2}
nid3 = toNodeID 2^(25::Integer)+10
node3 = exampleNodeState { nid = nid3}
nid4 = toNodeID 2^(9::Integer)+100
node4 = exampleNodeState { nid = nid4}
cacheWith2Entries = addCacheEntry node1 120 =<< addCacheEntry node2 0 emptyCache
cacheWith4Entries = addCacheEntry node3 110 =<< addCacheEntry node4 0 =<< cacheWith2Entries
it "works on an empty cache" $ do
incomingQuery exampleNodeState emptyCache 3 (toNodeID 2^(9::Integer)+5) `shouldBe` FORWARD Set.empty
incomingQuery exampleNodeState emptyCache 1 (toNodeID 2342) `shouldBe` FORWARD Set.empty
it "works on a cache with less entries than needed" $ do
c2 <- cacheWith2Entries
let (FORWARD nodeset) = incomingQuery exampleNodeState c2 4 (toNodeID 2^(9::Integer)+5)
Set.map (nid . cacheGetNodeStateUnvalidated) nodeset `shouldBe` Set.fromList [ nid1, nid2 ]
it "works on a cache with sufficient entries" $ do
c4 <- cacheWith4Entries
2020-04-16 01:08:41 +02:00
let
(FORWARD nodeset1) = incomingQuery exampleNodeState c4 3 (toNodeID 2^(9::Integer)+5)
(FORWARD nodeset2) = incomingQuery exampleNodeState c4 1 (toNodeID 2^(9::Integer)+5)
Set.map (nid . cacheGetNodeStateUnvalidated) nodeset1 `shouldBe` Set.fromList [nid4, nid2, nid3]
Set.map (nid . cacheGetNodeStateUnvalidated) nodeset2 `shouldBe` Set.fromList [nid4]
2020-04-12 00:17:38 +02:00
-- some example data
exampleNodeState :: NodeState
exampleNodeState = NodeState {
nid = toNodeID 12
, domain = exampleNodeDomain
, ipAddr = exampleIp
, dhtPort = 2342
, apPort = Nothing
, nodeCache = initCache
2020-04-12 00:17:38 +02:00
, successors = []
, predecessors = []
, kNeighbours = 3
, lNumBestNodes = 3
, pNumParallelQueries = 2
, jEntriesPerSlice = 2
}
exampleNodeDomain :: String
exampleNodeDomain = "example.social"
exampleVs :: (Integral i) => i
exampleVs = 4
exampleIp :: HostAddress6
exampleIp = tupleToHostAddress6 (0x2001, 0x16b8, 0x755a, 0xb110, 0x7d6a, 0x12ab, 0xf0c5, 0x386e)
2020-03-20 20:17:27 +01:00